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appendix, which appears in the microfilm edition, for selected 
data), 14 ( [a ] 2 4

D 7.6° (c 1.0, CH2Cl2)), and 3 in optically pure 
form. The latter was compared spectrally as well as by melting 
point (113-114 0 C, lit.5 114 0 C), mixture melting point 
(113-114 0 C), and rotation ( [ a ] 2 4

D 36.2° (c 0.395, CH3OH) 
(authentic, [ a ] 2 4

D 36.5° (c 1.0, CH3OH)) with an authentic 
sample. 
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Bicyclo[2.2.1]heptanes in Organic Synthesis. 
Stereocontrolled Approach to Sterol Side-Chain 
Construction: Synthesis of De-AB-cholest-ll-en-9-one 

Sir: 

The vast majority of sterols, including insect and crustacean 
moulting hormones, and the active metabolites of vitamin D 
possess the R configuration at C(20) (cf. cholesterol (I)). The 

problems associated with generating and controlling chirality 
in acyclic systems have primarily been responsible for the 
limited success recorded to date for elaborating the stereo­
chemistry at C(17) and at C(20) of sterol side chains.1'2 A 
potential solution to this problem is embodied in the bicy-
clo[2.2.1 ]heptane derivative 2 whose conformational rigidity 
allows for elaboration of not only the chirality at C(20), but 
also that encountered at C(13), C(14), and C(17). We detail 
below the conversion of ( - ) -2 into (+)-de-/lB-cholest-l 1-
en-9-one (3), a known precursor to tachysterol3 and precalci­
ferol 3. 

0 
The synthetic plan centered around the key bicyclic lactone 

4 in which the carbonyl unit of the lactone serves to introduce 
the remaining carbon atoms of the side chain (cf. 4 —• 5). The 
oxygen function at C(16) (steroid numbering) provides a 
handle for establishing the stereochemistry at C(14) via a C-O 
—•<• C-C chirality transfer (cf. 5 -* 6). 

Alcohol 7, [ a ] 2 5
D - 115° (c 1.01, CHCl3), obtained in 

near-quantitative yield by dehydrohalogenation (DBU, DMF, 
170-180 0C, 1 h) of (-)-bromo alcohol 2,3 was subjected to 
(a) benzylation (NaH, C6H5CH2Br, Bu4NI, benzene-Me2SO 
(20:1)) and (b) hydrolysis (10% HCl, THF) giving rise (~86% 
overall yield) to the bicyclo[2.2.1]heptenone 8: [ a ] 2 5

D -479° 
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(c 1.35, CHCl3), IR (CCl4) 1749 cm- ' . Exclusive endo al-
kylation of ketone 8 was accomplished, as anticipated, in 90% 
yield with methyl iodide using lithium diisopropylamide in 
tetrahydrofuran (0 0C). That the alkylated product 9, [ « ] 2 5 D 
—474° (c 1.40, CHCl3), was indeed the product of exclusive 
endo alkylation was evident from examination of its NMR 
spectrum at 250 MHz which revealed the C(3) exo proton as 
a quartet of doublets located at 5 2.46 (73 4 = 3.3, Jw CH3 = 
7.0Hz). 

Baeyer-Villiger oxidation of 9 using basic hydrogen per­
oxide in aqueous methanol-tetrahydrofuran gave rise to the 
sensitive hydroxy acid 10 which upon treatment with boron 

trifluoride etherate in methylene chloride at 0 0 C rearranged 
(85% overall) solely to intermediate 4, [ a ] 2 5

D +153° (c 1.50, 
CHCl3), with the expected transfer of chirality from C(14) -* 
C(16) (steroid numbering). Reduction 0'-Bu2AlH, toluene, 
—78 0 C) of lactone 4, followed by condensation with iso-
pentylidenetriphenylphosphorane (generated with sodium 
tert-amyhtc in benzene), provided in 50% overall yield dienol 
5 as a mixture of double-bond isomers about the C(22)-C(23) 
olefinic linkage. The required transfer of chirality from C(16) 
—• C( 14) was achieved classically by a two-step process. Allylic 
alcohol 5 was converted (ethyl vinyl ether, Hg(OAc)2, reflux) 
into its corresponding vinyl ether (82% yield) which upon 
heating in decalin at 200 0 C (5 h) under nitrogen generated 
aldehyde 6 in 90% yield.7 

Addition of methyllithium to aldehyde 6, followed by si­
multaneous catalytic hydrogenation (H2, 10% Pd/C, EtOH) 
of the two olefins and hydrogenolysis of the benzyl ether, gave 
diol 11 in 90% overall yield as a mixture of diastereomers. 

Oxidation (Jones reagent, —10 0 C, 5 min) of diol 11 afforded 
a 74% yield of keto aldehyde 12 (IR (CCl4) 2690, 1720 cm"1; 

NMR (CCl4) 5 2.01 (s, 3 H, CH3CO), 9.24 (s, 1 H, -CHO)) 
which cyclized (10% KOH, CH3OH) in 74% yield to the 
known enone 3:8 [ a ] 2 5

D +40.8° (c 3.45, CHCl3); IR (CCl4) 
1678, 1601 cm- ' ; NMR (CCl4) 8 6.45 (AB q, 2 H, J = 10, 
A^AB - 93.5 Hz). Enone 3 was analyzed as its 2,4-dinitro-
phenylhydrazone: mp 174-175 0 C, [a]25

D +21.8° (CHCl3) 
(lit.8 mp 176-177 0 C, [a]25

D +21.9° (CHCl3)). Reduction 
(H 2 ,5% Pd/C, EtOH) of de-/lB-cholest-l l-en-9-one (3) gave 
in near-quantitative yield the known de-/J5-cholestan-9-one 
(13) which was characterized as its semicarbazone: mp 

190-193 0 C, mmp 190-193 0 C, [ a ] 2 5
D +52.0° (CHCl3) (lit.8 

mp 193-195 0 C, [ a ] 2 5
D +52° (CHCl3)).9 
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a,/3 Dehydrogenation of Carboxamides 

Sir: 

Dehydrogenation of the readily available saturated fatty 
acids to the synthetically more useful a,/3-unsaturated deriv-

0002-7863/79/1501-4381 $01.00/0 © 1979 American Chemical Society 


